Sequence And Series Question 14

Question: If the harmonic mean between $ a $ and $ b $ be $ H $ , then the value of $ \frac{1}{H-a}+\frac{1}{H-b} $ is

Options:

A) $ a+b $

B) $ ab $

C) $ \frac{1}{a}+\frac{1}{b} $

D) $ \frac{1}{a}-\frac{1}{b} $

Show Answer

Answer:

Correct Answer: C

Solution:

Putting $ H=\frac{2ab}{a+b} $ , we have $ \frac{1}{H-a}+\frac{1}{H-b} $ $ =\frac{1}{( \frac{2ab}{a+b}-a )}+\frac{1}{( \frac{2ab}{a+b}-b )}=\frac{a+b}{ab-a^{2}}+\frac{a+b}{ab-b^{2}} $ $ =( \frac{a+b}{b-a} )( \frac{1}{a}-\frac{1}{b} )=( \frac{a+b}{b-a} )( \frac{b-a}{ab} )=\frac{a+b}{ab}=\frac{1}{a}+\frac{1}{b} $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index