Sequence And Series Question 142

Question: If the sum of the $ n $ terms of G.P. is $ S $ product is $ P $ and sum of their inverse is $ R $ , than $ P^{2} $ is equal to

[IIT 1966; Roorkee 1981]

Options:

A) $ \frac{R}{S} $

B) $ \frac{S}{R} $

C) $ {{( \frac{R}{S} )}^{n}} $

D) $ {{( \frac{S}{R} )}^{n}} $

Show Answer

Answer:

Correct Answer: D

Solution:

Given that sum $ S=\frac{a(r^{n}-1)}{r-1}=\frac{a,(1-r^{n})}{1-r} $ ……(i) $ P=a(ar)(ar^{2})……….(a{r^{n-1}})=a^{n}{r^{1+2+………+(n-1)}} $ $ =a^{n}{r^{(n-1)n/2}}\ i.e.,\ P^{2}=a^{2n}{r^{n(n-1)}} $ ……(ii) and $ R=\frac{1}{a}+\frac{1}{ar}+\frac{1}{ar^{2}}+………. $ upto $ \frac{1}{49} $ terms $ =\frac{1}{a}( 1+\frac{1}{r}+\frac{1}{r^{2}}+………upto\ n\ terms ) $ $ =\frac{\frac{1}{a}[ {{( \frac{1}{r} )}^{n}}-1 ]}{( \frac{1}{r}-1 )}( \because \ \frac{1}{r}>1 ) $ if $ r<1 $ $ =\frac{(1-r^{n})}{a{r^{n-1}}(1-r)} $ ……. (iii) Therefore , $ \frac{S}{R}=\frac{a(1-r^{n})}{1-r}\times \frac{a{r^{n-1}}(1-r)}{(1-r^{n})}=a^{2}{r^{n-1}} $ or $ {{( \frac{S}{R} )}^{n}}={{(a^{2}{r^{n-1}})}^{n}}=a^{2n}{r^{n(n-1)}}=P^{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें