Sequence And Series Question 151

Question: The sum to $ n $ terms of the infinite series $ {{1.3}^{2}}+{{2.5}^{2}}+{{3.7}^{2}}+……….\infty $ is

[AMU 1982]

Options:

A) $ \frac{n}{6}(n+1)(6n^{2}+14n+7) $

B) $ \frac{n}{6}(n+1)(2n+1)(3n+1) $

C) $ 4n^{3}+4n^{2}+n $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

This is an A.G. series whose $ n^{th} $ term is equal to $ T_{n}=n{{(2n+1)}^{2}}=4n^{3}+4n^{2}+n $
$ \therefore $ $ S_{n}=\sum\limits_1^{n}{T_{n}}=\sum\limits_1^{n}{(4n^{3}+4n^{2}+n)} $ $ =4\sum\limits_1^{n}{n^{3}}+4\sum\limits_1^{n}{n^{2}}+\sum\limits_1^{n}{n} $ $ =4{{{ \frac{n}{2}(n+1) }}^{2}}+\frac{4}{6}n(n+1)(2n+1)+\frac{n}{2}(n+1) $ $ =\frac{n}{6}(n+1)(6n^{2}+14n+7) $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index