Sequence And Series Question 175

Question: $ 1+\frac{{{({\log_{e}}n)}^{2}}}{2,!}+\frac{{{({\log_{e}}n)}^{4}}}{4,!}+….= $

[MP PET 1996]

Options:

A) $ n $

B) $ 1/n $

C) $ \frac{1}{2}(n+{n^{-1}}) $

D) $ \frac{1}{2}(e^{n}+{e^{-n}}) $

Show Answer

Answer:

Correct Answer: C

Solution:

$ 1+\frac{{{({\log_{e}}n)}^{2}}}{2,!}+\frac{{{({\log_{e}}n)}^{4}}}{4,!}+….=\frac{{e^{{\log_{e}}n}}+{e^{-{\log_{e}}n}}}{2} $ = $ \frac{n+{n^{-1}}}{2} $ .