Sequence And Series Question 176

Question: If $ n $ geometric means between $ a $ and $ b $ be $ G_1,\ G_2,\ ….. $ $ G_{n} $ and a geometric mean be $ G $ , then the true relation is

Options:

A) $ G_1.G_2……..G_{n}=G $

B) $ G_1.G_2……..G_{n}={G^{1/n}} $

C) $ G_1.G_2……..G_{n}=G^{n} $

D) $ G_1.G_2……..G_{n}={G^{2/n}} $

Show Answer

Answer:

Correct Answer: C

Solution:

Here $ G={{(ab)}^{1/2}} $ and $ G_1=ar^{1},\ G_2=ar^{2},……..G_{n}=ar^{n} $ Therefore $ G_1.\ G_2.\ G_3…..G_{n}=a^{n}{r^{1+2+…+n}}=a^{n}{r^{n(n+1)/2}} $ But $ a{r^{n+1}}=b\Rightarrow r={{( \frac{b}{a} )}^{1/(n+1)}} $ Therefore, the required product is $ a^{n}{{( \frac{b}{a} )}^{1/(n+1)\ .\ n(n+1)/2}}={{(ab)}^{n/2}}={{{ {{(ab)}^{1/2}} }}^{n}}=G^{n} $ . Note: It is a well-known fact.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें