Sequence And Series Question 178
Question: The sum of the series $ 1+2x+3x^{2}+4x^{3}+……… $ upto $ n $ terms is
Options:
A) $ \frac{1-(n+1)x^{n}+n{x^{n+1}}}{{{(1-x)}^{2}}} $
B) $ \frac{1-x^{n}}{1-x} $
C) $ {x^{n+1}} $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
Let  $ S_{n} $  be the sum of the given series to  $ n $  terms, then    $ S_{n}=1+2x+3x^{2}+4x^{3}+……..+n{x^{n-1}} $  ?..(i)  $ xS_{n}=\text{         }x+2x^{2}+3x^{2}+………..+nx^{n} $  ?..(ii) Subtracting (ii) from (i), we get  $ (1-x)S_{n}=1+x+x^{2}+x^{3}+…..to $   $ n $  terms  $ -nx^{n} $                 $ =( \frac{(1-x^{n})}{(1-x)} )-nx^{n} $
$ \Rightarrow S_{n}=\frac{(1-x^{n})-nx^{n}(1-x)}{{{(1-x)}^{2}}}=\frac{1-(n+1)x^{n}+n{x^{n+1}}}{{{(1-x)}^{2}}} $ .
 BETA
  BETA 
             
             
           
           
           
          