Sequence And Series Question 180

Question: $ \alpha ,\ \beta $ are the roots of the equation $ x^{2}-3x+a=0 $ and $ \gamma ,\ \delta $ are the roots of the equation $ x^{2}-12x+b=0 $ . If $ \alpha ,\ \beta ,\ \gamma ,\ \delta $ form an increasing G.P., then $ (a,\ b)= $

[DCE 2000]

Options:

A) (3, 12)

B) (12, 3)

C) (2, 32)

D) (4, 16)

Show Answer

Answer:

Correct Answer: C

Solution:

Since $ \alpha ,\ \beta ,\ \gamma ,\ \delta $ form an increasing G.P., so $ \alpha \delta =\beta \gamma $ where $ \alpha <\beta <\gamma <\delta $ . On solving $ x^{2}-3x+a=0 $ , we get $ x=\frac{1}{2}(3\pm \sqrt{9-4a}) $ . Also $ \alpha <\beta $ . Hence $ \alpha =\frac{1}{2}(3-\sqrt{9-4a}),\ \beta =\frac{1}{2}(3+\sqrt{9-4a}) $ Similarly from $ x^{2}-12x+b=0 $ , we get $ \gamma =\frac{1}{2}(12-\sqrt{144-4b}),\ \delta =\frac{1}{2}(12+\sqrt{144-4b}) $ Substituting these values of $ \alpha ,\ \beta ,\ \gamma ,\ \delta $ in $ \alpha \delta =\beta \gamma $ and simplifying, we get $ (a,\ b)=(2,\ 32) $ . Trick: Check the alternates; only (c) satisfies the condition.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें