Sequence And Series Question 190

Question: The sum of the series $ 3+33+333+…+n $ terms is

[RPET 2000]

Options:

A) $ \frac{1}{27}({10^{n+1}}+9n-28) $

B) $ \frac{1}{27}({10^{n+1}}-9n-10) $

C) $ \frac{1}{27}({10^{n+1}}+10n-9) $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Series 3 + 33 + 333 +?……+ n terms Given series can be written as, $ =\frac{1}{3}[9+99+999+……..+n\text{terms }] $ $ =\frac{1}{3}[ (10-1)+(10^{2}-1)+(10^{3}-1)+….+n,terms ] $ $ =\frac{1}{3}[ 10+10^{2}+….+10^{n} ] $ $ -\frac{1}{3}[ 1+1+1+….+n,terms ] $ $ =\frac{1}{3},.,\frac{10,(10^{n}-1)}{10-1}-\frac{1}{3}.n, $ $ =\frac{1}{3}[ \frac{{10^{n+1}}-10}{9}-n ] $ $ =\frac{1}{3},[ \frac{{10^{n,+,1}}-9n-10}{9} ] $ $ =\frac{1}{27}[{10^{n,+,1}}-9n-10] $ .