Sequence And Series Question 193

Question: If $ p^{th},\ q^{th},\ r^{th} $ and $ s^{th} $ terms of an A.P. be in G.P., then $ (p-q),\ (q-r),\ (r-s) $ will be in

[MP PET 1993]

Options:

A) G.P.

B) A.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

If $ a $ and d be the first term and common difference of the A.P. Then $ T_{p}=a+(p-1)d,\ T_{q}=a+(q-1)d $ and $ T_{r}=a+(r-1)d $ . If $ T_{p},\ T_{q},\ T_{r} $ are in G.P. Then its common ratio $ R=\frac{T_{q}}{T_{p}}=\frac{T_{r}}{T_{q}}=\frac{T_{q}-T_{r}}{T_{p}-T_{q}} $ $ =\frac{[a+(q-1)d]-[a+(r-1)d]}{[a+(p-1)d]-[a+(q-1)d]}=\frac{q-r}{p-q} $ Similarly, we can show that $ R=\frac{q-r}{p-q}=\frac{r-s}{q-r} $ Hence $ (p-q),\ (q-r),\ (r-s) $ be in G.P.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें