Sequence And Series Question 2

Question: If every term of a G.P. with positive terms is the sum of its two previous terms, then the common ratio of the series is

[RPET 1986]

Options:

A) 1

B) $ \frac{2}{\sqrt{5}} $

C) $ \frac{\sqrt{5}-1}{2} $

D) $ \frac{\sqrt{5}+1}{2} $

Show Answer

Answer:

Correct Answer: D

Solution:

Let first term and common ratio of G.P. are respectively $ a $ and $ r $ , then under condition, $ T_{n}={T_{n-1}}+{T_{n-2}} $
$ \Rightarrow $ $ a{r^{n-1}}=a{r^{n-2}}+a{r^{n-3}} $
$ \Rightarrow $ $ a{r^{n-1}}=a{r^{n-1}}{r^{-1}}+a{r^{n-1}}{r^{-2}} $
$ \Rightarrow $ $ 1=\frac{1}{r}+\frac{1}{r^{2}} $
$ \Rightarrow $ $ r^{2}-r-1=0 $
$ \Rightarrow $ $ r=\frac{1\pm \sqrt{1+4}}{2}=\frac{1+\sqrt{5}}{2} $ Taking only (+) sign $ (\because \ r>1) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें