Sequence And Series Question 207
Question: If $ a,\ b,\ c $ are in A.P. and $ a,\ b,\ d $ in G.P., then $ a,\ a-b,\ d-c $ will be in
[Ranchi BIT 1968]
Options:
A) A.P.
B) G.P.
C) H.P.
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
Given that  $ a,\ b,\ c $  are in A.P.
$ \Rightarrow b=\frac{a+c}{2} $  ?..(i) and  $ b^{2}=ad $  ?.. (ii) Hence  $ a,\ a-b,\ d-c $  are in G.P. because  $ {{(a-b)}^{2}}=a^{2}-2ab+b^{2}=a(a-2b)+ad $   $ =a(a-a-c)+ad=ad-ac $ .
 BETA
  BETA 
             
             
           
           
           
          