Sequence And Series Question 208

Question: If $ a^{2},\ b^{2},\ c^{2} $ are in A.P., then $ {{(b+c)}^{-1}},\ {{(c+a)}^{-1}} $ and $ {{(a+b)}^{-1}} $ will be in

[Roorkee 1968; RPET 1996]

Options:

A) H.P.

B) G.P.

C) A.P.

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ a^{2},\ b^{2},\ c^{2} $ are in A.P. Therefore $ a^{2}+(ab+bc+ca) $ , $ b^{2}+(ab+bc+ca) $ , $ c^{2}+(ab+bc+ca) $ will not necessarily be in A.P. $ \Rightarrow $ $ {a(a+b)+c,(a+b)},\ {b(b+a)+c,(b+a)},\ $ $ c(c+b)+a(b+c) $ will be in A.P. Þ $ (a+b)(a+c),\ (b+a)(b+c),\ (c+a)(c+b) $ will be in A.P. if $ a, b, c $ are in A.P. $ \Rightarrow $ $ \frac{1}{b+c},\ \frac{1}{c+a},\ \frac{1}{a+b} $ will be in A.P.{Dividing each term by $ f(n+3)+3f(n+1)=f(n+2)+3f(n) $ }



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें