Sequence And Series Question 210
Question: $ 1+3+7+15+31+………. $ to $ n $ terms =
[IIT 1963]
Options:
A) $ {2^{n+1}}-n $
B) $ {2^{n+1}}-n-2 $
C) $ 2^{n}-n-2 $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
Let  $ T_{n} $  be the  $ n^{th} $  term and  $ S $  the sum upto  $ n $  terms.  $ S=1+3+7+15+31+……+T_{n} $  Again  $ S=1+3+7+15+………..\text{  }+{T_{n-1}}+T_{n} $  Subtracting, we get  $ 0=1+{ 2+4+8+…(T_{n}-{T_{n-1}}) }-T_{n} $
$ \therefore \ \ T_{n}=1+2+2^{2}+2^{3}+…..upto\ n\ terms $   $ =\frac{1(2^{n}-1)}{2-1}=2^{n}-1 $  Now  $ S=\Sigma T_{n}=\Sigma 2^{n}-\Sigma 1 $   $ =(2+2^{2}+2^{3}+……+2^{n})-n $   $ =2( \frac{2^{n}-1}{2-1} )-n={2^{n+1}}-2-n $ . Aliter:  $ 1+3+7+……+T_{n} $   $ =2-1+2^{2}-1+2^{3}-1+……….+2^{n}-1 $   $ =(2+2^{2}+……+2^{n})-n={2^{n+1}}-2-n $ . Trick: Check the options for $ n=1,\ 2 $ .
 BETA
  BETA 
             
             
           
           
           
          