Sequence And Series Question 211

Question: If the ratio of the sum of $ n $ terms of two A.P.’s be $ (7n+1):(4n+27) $ , then the ratio of their $ 11^{th} $ terms will be

[AMU 1996]

Options:

A) $ 2:3 $

B) $ 3:4 $

C) $ 4:3 $

D) $ 5:6 $

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ S_{n} $ and $ S{’{n}} $ be the sums of n terms of two A.P.’s and $ T{11} $ and $ T{’{11}} $ be the respective $ 11^{th} $ terms, then $ \frac{S{n}}{S{’{n}}}=\frac{\frac{n}{2}[2a+(n-1)d]}{\frac{n}{2}[2a’+(n-1)d’]}=\frac{7n+1}{4n+27} $
$ \Rightarrow $ $ \frac{a+\frac{(n-1)}{2}d}{a’+\frac{(n-1)}{2}d’}=\frac{7n+1}{4n+27} $ Now put $ n=21 $ , we get $ \frac{a+10d}{a’+10d’}=\frac{T
{11}}{T{’_{11}}}=\frac{148}{111}=\frac{4}{3} $ . Note : If ratio of sum of $ n $ terms of two A.P.’s are given in terms of $ n $ and ratio of their $ p^{th} $ terms are to be found then put $ n=2p-1 $ . Here we put $ n=11\times 2-1=21 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें