Sequence And Series Question 214

Question: If $ a,\ b,\ c $ are in A.P. and $ |a|,\ |b|,\ |c|\ <1 $ and $ x=1+a+a^{2}+……..\infty $ $ y=1+b+b^{2}+…….\infty $ $ z=1+c+c^{2}……..\infty $ Then $ x,\ y,\ z $ shall be in

[Karnataka CET 1995; AIEEE 2005]

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Clearly $ x=\frac{1}{1-a},\ y=\frac{1}{1-b},\ z=\frac{1}{1-c} $ Since $ a,\ b,\ c $ are in A.P.
$ \Rightarrow $ $ 1-a,\ 1-b,\ 1-c $ are also in A.P.
$ \Rightarrow $ $ \frac{1}{1-a},\ \frac{1}{1-b},\ \frac{1}{1-c} $ are in H.P.
$ \therefore $ $ x,\ y,\ z $ are in H.P.