Sequence And Series Question 214
Question: If $ a,\ b,\ c $ are in A.P. and $ |a|,\ |b|,\ |c|\ <1 $ and $ x=1+a+a^{2}+……..\infty $ $ y=1+b+b^{2}+…….\infty $ $ z=1+c+c^{2}……..\infty $ Then $ x,\ y,\ z $ shall be in
[Karnataka CET 1995; AIEEE 2005]
Options:
A) A.P.
B) G.P.
C) H.P.
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
Clearly  $ x=\frac{1}{1-a},\ y=\frac{1}{1-b},\ z=\frac{1}{1-c} $  Since  $ a,\ b,\ c $  are in A.P.
$ \Rightarrow  $   $ 1-a,\ 1-b,\ 1-c $  are also in A.P.
$ \Rightarrow  $   $ \frac{1}{1-a},\ \frac{1}{1-b},\ \frac{1}{1-c} $ are in H.P.
$ \therefore  $  $ x,\ y,\ z $  are in H.P.
 BETA
  BETA 
             
             
           
           
           
          