Sequence And Series Question 214

Question: If $ a,\ b,\ c $ are in A.P. and $ |a|,\ |b|,\ |c|\ <1 $ and $ x=1+a+a^{2}+……..\infty $ $ y=1+b+b^{2}+…….\infty $ $ z=1+c+c^{2}……..\infty $ Then $ x,\ y,\ z $ shall be in

[Karnataka CET 1995; AIEEE 2005]

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Clearly $ x=\frac{1}{1-a},\ y=\frac{1}{1-b},\ z=\frac{1}{1-c} $ Since $ a,\ b,\ c $ are in A.P.
$ \Rightarrow $ $ 1-a,\ 1-b,\ 1-c $ are also in A.P.
$ \Rightarrow $ $ \frac{1}{1-a},\ \frac{1}{1-b},\ \frac{1}{1-c} $ are in H.P.
$ \therefore $ $ x,\ y,\ z $ are in H.P.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें