Sequence And Series Question 22

Question: If $ \frac{{a^{n+1}}+{b^{n+1}}}{a^{n}+b^{n}} $ be the harmonic mean between $ a $ and $ b $ , then the value of $ n $ is

[Assam PET 1986]

Options:

A) 1

B) $ -1 $

C) 0

D) 2

Show Answer

Answer:

Correct Answer: B

Solution:

We have $ \frac{{a^{n+1}}+{b^{n+1}}}{a^{n}+b^{n}}=\frac{2ab}{a+b} $
$ \Rightarrow $ $ {a^{n+2}}+a{b^{n+1}}+b{a^{n+1}}+{b^{n+2}}=2{a^{n+1}}b+2{b^{n+1}}a $
$ \Rightarrow $ $ {a^{n+1}}(a-b)={b^{n+1}}(a-b) $ or $ {{( \frac{a}{b} )}^{n+1}}=(1)={{( \frac{a}{b} )}^{0}} $ Hence $ n=-1 $ .