Sequence And Series Question 220
Question: Given $ a^{x}=b^{y}=c^{z}=d^{u} $ and $ a,\ b,\ c,\ d $ are in G.P., then $ x,y,z,u $ are in
[ISM Dhanbad 1972; Roorkee 1984; RPET 2001]
Options:
A) A.P.
B) G.P.
C) H.P.
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
Let  $ a^{x}=b^{y}=c^{z}=d^{u}=k $   (say) Then  $ a={k^{1/x}},\ b={k^{1/y}},\ c={k^{1/z}},\ d={k^{1/u}} $  Since  $ a,\ b,\ c $  are in G.P.,  therefore  $ b^{2}=ac\Rightarrow {k^{2/y}}={k^{1/x}}.{k^{1/z}}={k^{1/x+1/z}} $
$ \Rightarrow \frac{2}{y}=\frac{1}{x}+\frac{1}{z}\Rightarrow \frac{1}{x},\ \frac{1}{y},\ \frac{1}{z} $  are in A.P.
$ \Rightarrow  $  $ x,\ y,\ z $  are in H.P. Similarly it can be shown that  $ y,\ z,\ u $  are also in H.P.
$ \therefore  $  $ x,\ y,\ z $  and  $ u $  are in H.P.
 BETA
  BETA 
             
             
           
           
           
          