Sequence And Series Question 220

Question: Given $ a^{x}=b^{y}=c^{z}=d^{u} $ and $ a,\ b,\ c,\ d $ are in G.P., then $ x,y,z,u $ are in

[ISM Dhanbad 1972; Roorkee 1984; RPET 2001]

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ a^{x}=b^{y}=c^{z}=d^{u}=k $ (say) Then $ a={k^{1/x}},\ b={k^{1/y}},\ c={k^{1/z}},\ d={k^{1/u}} $ Since $ a,\ b,\ c $ are in G.P., therefore $ b^{2}=ac\Rightarrow {k^{2/y}}={k^{1/x}}.{k^{1/z}}={k^{1/x+1/z}} $
$ \Rightarrow \frac{2}{y}=\frac{1}{x}+\frac{1}{z}\Rightarrow \frac{1}{x},\ \frac{1}{y},\ \frac{1}{z} $ are in A.P.
$ \Rightarrow $ $ x,\ y,\ z $ are in H.P. Similarly it can be shown that $ y,\ z,\ u $ are also in H.P.
$ \therefore $ $ x,\ y,\ z $ and $ u $ are in H.P.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें