Sequence And Series Question 221
Question: If $ A_1,\ A_2 $ are the two A.M.’s between two numbers $ a $ and $ b $ and $ G_1,\ G_2 $ be two G.M.’s between same two numbers, then $ \frac{A_1+A_2}{G_1.G_2}= $
[Roorkee 1983; DCE 1998]
Options:
A) $ \frac{a+b}{ab} $
B) $ \frac{a+b}{2ab} $
C) $ \frac{2ab}{a+b} $
D) $ \frac{ab}{a+b} $
Show Answer
Answer:
Correct Answer: A
Solution:
Given that  $ a,\ A_1,\ A_2,\ b $  are in A.P. Therefore  $ A_1=\frac{a+A_2}{2},\ A_2=\frac{A_1+b}{2} $
$ \Rightarrow  $   $ x+y+z=15 $
$ \Rightarrow  $   $ =9+15+a=\frac{5}{2}(9+2) $  or  $ A_1+A_2=a+b $  ?..(i) and  $ a,\ G_1,\ G_2,\ b $  are in G.P. Therefore  $ G_1^{2}=aG_2,\ G_2^{2}=bG_1 $       ?..(ii)
$ \Rightarrow G_1^{2}G_2^{2}=abG_1G_2\Rightarrow G_1G_2=ab $  Hence  $ \frac{A_1+A_2}{G_1G_2}=\frac{a+b}{ab} $  Trick: Let $ a=1,\ b=2 $ , then  $ A_1+A_2=1+2=3 $  and   $ G_1\ .\ G_2=2\times 1=2 $
$ \therefore \  $  $ \frac{A_1+A_2}{G_1G_2}=\frac{3}{2} $ , which is given by (a).
 BETA
  BETA 
             
             
           
           
           
          