Sequence And Series Question 226

Question: If the $ {{(m+1)}^{th}},\ {{(n+1)}^{th}} $ and $ {{(r+1)}^{th}} $ terms of an A.P. are in G.P. and $ m,\ n,\ r $ are in H.P., then the value of the ratio of the common difference to the first term of the A.P. is

[MNR 1989; Roorkee 1994]

Options:

A) $ -\frac{2}{n} $

B) $ \frac{2}{n} $

C) $ -\frac{n}{2} $

D) $ \frac{n}{2} $

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ a $ be the first term and d be the common difference of the given A.P. Then as given the $ {{(m+1)}^{th}} $ , $ {{(n+1)}^{th}} $ and $ {{(r+1)}^{th}} $ terms are in G.P.
$ \Rightarrow $ $ a+md,\ a+nd,\ a+rd $ are in G.P.
$ \Rightarrow $ $ {{(a+nd)}^{2}}=(a+md)(a+rd) $
$ \Rightarrow $ $ a(2n-m-r)=d(mr-n^{2}) $ or $ \frac{d}{a}=\frac{2n-(m+r)}{mr-n^{2}} $ ?..(i) Next, $ m,\ n,\ r $ in H.P.
$ \Rightarrow n=\frac{2mr}{m+r} $ ?..(ii) From (i) and (ii) $ \frac{d}{a}=\frac{2n-(m+r)}{mr-n^{2}}=\frac{2}{n}( \frac{2n-(m+r)}{(m+r)-2n} )=-\frac{2}{n} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें