Sequence And Series Question 229

Question: pth term of the series $ ( 3-\frac{1}{n} )+( 3-\frac{2}{n} )+( 3-\frac{3}{n} )+…. $ will be

Options:

A) $ ( 3+\frac{p}{n} ) $

B) $ ( 3-\frac{p}{n} ) $

C) $ ( 3+\frac{n}{p} ) $

D) $ ( 3-\frac{n}{p} ) $

Show Answer

Answer:

Correct Answer: B

Solution:

Given series $ ( 3-\frac{1}{n} )+( 3-\frac{2}{n} )+( 3-\frac{3}{n} )+…….. $ (A.P.) Therefore common difference $ d=( 3-\frac{2}{n} )-( 3-\frac{1}{n} )=-\frac{1}{n} $ and first term $ a=( 3-\frac{1}{n} ) $ Now $ p^{th} $ term of the series $ =a+(p-1)d $ $ =( 3-\frac{1}{n} )+(p-1)( -\frac{1}{n} )=3-\frac{1}{n}+\frac{1}{n}-\frac{p}{n}=( 3-\frac{p}{n} ) $ . Trick: This question can also be done by inspection first $ -\frac{1}{n} $ , second $ -\frac{2}{n} $ , third $ -\frac{3}{n} $ , therefore, $ p^{th} $ will be $ -\frac{p}{n} $ . Hence the result (3 is constant).



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें