Sequence And Series Question 232

Question: $ {2^{1/4}}{{.4}^{1/8}}{{.8}^{1/16}}{{.16}^{1/32}}………. $ is equal to

[MNR 1984; MP PET 1998; AIEEE 2002]

Options:

A) 1

B) 2

C) $ \frac{3}{2} $

D) $ \frac{5}{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ {2^{1/4}}{{.4}^{1/8}}{{.8}^{1/16}}{{.16}^{1/32}}…..\infty $ $ ={2^{1/4+2/8+3/16+……}}=2^{S} $ , where $ S $ is given by $ S=\frac{1}{4}+2\frac{1}{8}+3\frac{1}{16}+4\frac{1}{32}+………..\infty $ ……(i)
$ \Rightarrow $ $ \frac{1}{2}S=\text{ }\frac{1}{8}+\frac{2}{16}+\frac{3}{32}+\frac{4}{64}+……….\infty $ ……(ii) Subtracting (ii) from (i), we get $ S=1 $ . Hence required product $ =2^{1}=2 $ .