Sequence And Series Question 234
Question: If 9 A.M.’s and H.M.’s are inserted between the 2 and 3 and if the harmonic mean $ H $ is corresponding to arithmetic mean $ A $ , then $ A+\frac{6}{H}= $
[ISM Dhanbad 1987]
Options:
A) 1
B) 3
C) 5
D) 6
Show Answer
Answer:
Correct Answer: C
Solution:
Let  $ A_{j},\ H_{j}, $  where  $ j=1,\ 2,\ 3,…….9 $  denote the 9 A.M.?s  and H.M.?s  between 2 and 3. Then  $ 2,A_1,A_2……..A_9,3 $  are in A.P. Let  $ d $  be the common difference of this A.P. Then  $ -d=\frac{a_1-a_{2n}}{2n-1} $
$ \Rightarrow  $  $ d=\frac{1}{10} $  If $ A $  denotes the  $ J^{th} $  arithmetic mean, then  $ A=2+jd=2+( \frac{j}{10} ) $  Again  $ 2,\ H_1,\ H_2…….,H_9,\ 3 $  will be in H.P.  $ i.e. $ ,  $ \frac{1}{2},\frac{1}{H_1},\frac{1}{H_2},……\frac{1}{H_9},\ \frac{1}{3} $  will be in A.P. Let  $ D $  be the common difference of this A.P. Then  $ \frac{1}{3}=\frac{1}{2}+10D $
$ \Rightarrow  $  $ D=-\frac{1}{60} $  If  $ H $  be the  $ J^{th} $  harmonic mean, then  $ \frac{1}{H}=\frac{1}{2}+jD=\frac{1}{2}-\frac{j}{60} $
$ \therefore  $  $ A+\frac{6}{H}=2+\frac{j}{10}+6( \frac{1}{2}-\frac{j}{60} )=5+\frac{j}{10}-\frac{j}{10}=5 $ . Aliter: As we know  $ A_{m}=2+\frac{m(3-2)}{9+1}=2+\frac{m}{10} $  and  $ \frac{1}{H_{m}}=\frac{1}{2}+\frac{m(2-3)}{2\times 3(9+1)}=\frac{1}{2}-\frac{m}{60} $
$ \therefore  $  $ A_{m}+6\times \frac{1}{H_{m}}\ \ i.e.\ \ A+\frac{6}{H}=2+\frac{m}{10}+3-\frac{m}{10}=5 $ .
 BETA
  BETA 
             
             
           
           
           
          