Sequence And Series Question 234

Question: If 9 A.M.’s and H.M.’s are inserted between the 2 and 3 and if the harmonic mean $ H $ is corresponding to arithmetic mean $ A $ , then $ A+\frac{6}{H}= $

[ISM Dhanbad 1987]

Options:

A) 1

B) 3

C) 5

D) 6

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ A_{j},\ H_{j}, $ where $ j=1,\ 2,\ 3,…….9 $ denote the 9 A.M.?s and H.M.?s between 2 and 3. Then $ 2,A_1,A_2……..A_9,3 $ are in A.P. Let $ d $ be the common difference of this A.P. Then $ -d=\frac{a_1-a_{2n}}{2n-1} $
$ \Rightarrow $ $ d=\frac{1}{10} $ If $ A $ denotes the $ J^{th} $ arithmetic mean, then $ A=2+jd=2+( \frac{j}{10} ) $ Again $ 2,\ H_1,\ H_2…….,H_9,\ 3 $ will be in H.P. $ i.e. $ , $ \frac{1}{2},\frac{1}{H_1},\frac{1}{H_2},……\frac{1}{H_9},\ \frac{1}{3} $ will be in A.P. Let $ D $ be the common difference of this A.P. Then $ \frac{1}{3}=\frac{1}{2}+10D $
$ \Rightarrow $ $ D=-\frac{1}{60} $ If $ H $ be the $ J^{th} $ harmonic mean, then $ \frac{1}{H}=\frac{1}{2}+jD=\frac{1}{2}-\frac{j}{60} $
$ \therefore $ $ A+\frac{6}{H}=2+\frac{j}{10}+6( \frac{1}{2}-\frac{j}{60} )=5+\frac{j}{10}-\frac{j}{10}=5 $ . Aliter: As we know $ A_{m}=2+\frac{m(3-2)}{9+1}=2+\frac{m}{10} $ and $ \frac{1}{H_{m}}=\frac{1}{2}+\frac{m(2-3)}{2\times 3(9+1)}=\frac{1}{2}-\frac{m}{60} $
$ \therefore $ $ A_{m}+6\times \frac{1}{H_{m}}\ \ i.e.\ \ A+\frac{6}{H}=2+\frac{m}{10}+3-\frac{m}{10}=5 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें