Sequence And Series Question 235

Question: If $ n $ geometric means be inserted between $ a $ and $ b $ then the $ n^{th} $ geometric mean will be

Options:

A) $ a,{{( \frac{b}{a} )}^{\frac{n}{n-1}}} $

B) $ a,{{( \frac{b}{a} )}^{\frac{n-1}{n}}} $

C) $ a,{{( \frac{b}{a} )}^{\frac{n}{n+1}}} $

D) $ a,{{( \frac{b}{a} )}^{\frac{1}{n}}} $

Show Answer

Answer:

Correct Answer: C

Solution:

If $ n $ geometric means $ g_1,g_2…….g_{n} $ are to be inserted between two positive real numbers $ a $ and $ b $ , then $ a,\ g_1,\ g_2……g_{n},\ b $ are in G.P. Then $ g_1=ar,\ g_2=ar^{2}……..g_{n}=ar^{n} $ So $ b=a{r^{n+1}}\Rightarrow r={{( \frac{b}{a} )}^{1/(n+1)}} $ Now $ n^{th} $ geometric mean $ $ $ (g_{n})=ar^{n}=a{{( \frac{b}{a} )}^{n/(n+1)}} $ . Aliter : As we have the $ m^{th} $ G.M. is given by $ G_{m}=a{{( \frac{b}{a} )}^{\frac{m}{n+1}}} $ Now replace $ m $ by $ n $ we get the required result.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें