Sequence And Series Question 236

Question: If the $ p^{th},\ q^{th} $ and $ r^{th} $ term of a G.P. and H.P. are $ a,\ b,\ c $ , then $ a(b-c)\log a+b(c-a) $ $ \log b+c(a-b)\log c= $

[Dhanbad Engg. 1976]

Options:

A) $ -1 $

B) 0

C) 1

D) Does not exist

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ A $ and $ R $ be the first term and common ratio of the G.P. Then $ a=A{R^{p-1}},\ b=A{R^{q-1}} $ and $ c=A{R^{r-1}} $ ?..(i) Again if $ x $ and $ d $ be the first and common difference of the A.P. corresponding to the given H.P. Then $ \frac{1}{a}=x+(p-1)d,\ \frac{1}{b}=x+(q-1)d $ , $ \frac{1}{c}=x+(r-1)d $ ?..(ii) From (i), $ \frac{a}{b}={R^{p-q}} $ or $ {{( \frac{a}{b} )}^{1/c}}={{({R^{p-q}})}^{1/c}}=R^{k} $ , where $ k=\frac{p-q}{c} $ From (ii), $ k=(p-q){ x+(r-1)d } $ $ =(p-q)x-(p-q)(r-1)d $ $ =(p-q)x-(p-q)d+(rp-rq)d $ ?..(iii) Similarly, $ {{( \frac{b}{c} )}^{1/a}}={{({R^{q-r}})}^{1/a}}=R^{n} $ , where $ n=\frac{q-r}{a} $
$ \Rightarrow $ $ n=(q-r)\times { x+(p-1)d } $
$ \Rightarrow $ $ n=(q-r)x-(q-r)d+(pq-pr)d $ ?..(iv) and $ {{( \frac{c}{a} )}^{1/b}}={{({R^{r-p}})}^{1/b}}=R^{m} $ Where $ m=\frac{r-p}{b}=(r-p){ x+(q-1)d } $ $ =(r-p)x-(r-p)d+(rq-qp)d $ ?..(v) Hence $ {{( \frac{a}{b} )}^{1/c}}{{( \frac{b}{c} )}^{1/a}}{{( \frac{c}{a} )}^{1/b}}=R^{k}R^{m}R^{n}={R^{m+n+k}} $ $ =R^{0}=1 $ {since $ k+m+n=0 $ }, Adding (iii), (iv), (v) Taking logarithm of both sides, we get $ \frac{1}{c}({\log_{e}}a-{\log_{e}}b)+\frac{1}{a}({\log_{e}}b-{\log_{e}}c) $ $ +\frac{1}{b}({\log_{e}}c-{\log_{e}}a)={\log_{e}}(1) $
$ \Rightarrow $ $ ( \frac{1}{c}-\frac{1}{b} ){\log_{e}}a+( \frac{1}{a}-\frac{1}{c} ){\log_{e}}b+( \frac{1}{b}-\frac{1}{a} ){\log_{e}}c=0 $
$ \Rightarrow $ $ ( \frac{b-c}{bc} ){\log_{e}}a+( \frac{c-a}{ac} ){\log_{e}}b+( \frac{a-b}{ab} ){\log_{e}}c=0 $
$ \Rightarrow $ $ a(b-c){\log_{e}}a+b(c-a){\log_{e}}b+c(a-b){\log_{e}}c=0 $ . Note: Such type of questions $ i.e. $ containing term with cyclic coefficient associated with negative sign reduce to 0 mostly.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें