Sequence And Series Question 237

Question: If $ a,,b,\ c $ are in A.P. and $ a^{2},\ b^{2},\ c^{2} $ are in H.P., then

[MNR 1986, 1988; IIT 1977, 2003]

Options:

A) $ a=b=c $

B) $ 2b=3a+c $

C) $ b^{2}=\sqrt{(ac/8)} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Given that $ a,\ b,\ c $ are in A.P.
$ \Rightarrow $ $ 2b=a+c $ ……(i) and $ a^{2},b^{2},\ c^{2} $ are in H.P.
$ \Rightarrow $ $ b^{2}=\frac{2a^{2}c^{2}}{a^{2}+c^{2}} $
$ \Rightarrow $ $ b^{2}(a^{2}+c^{2})=2a^{2}c^{2} $
$ \Rightarrow $ $ J^{th} $
$ \Rightarrow $ $ b^{2}{ 4b^{2}-2ac }=2a^{2}c^{2} $ , from (i)
$ \Rightarrow $ $ 4b^{4}-2acb^{2}=2a^{2}c^{2} $
$ \Rightarrow $ $ (b^{2}-ac)(2b^{2}+ac)=0 $
$ \Rightarrow $ Either $ b^{2}-ac=0 $ or $ 2b^{2}+ac=0 $ If $ b $ , then $ b^{2}=ac $
$ \Rightarrow $ $ {{{ \frac{1}{2}(a+c) }}^{2}}=ac $ from (i)
$ \Rightarrow $ $ {{(a+c)}^{2}}=4ac\Rightarrow $ $ {{(a-c)}^{2}}=0 $ Therefore $ a=c $ and if $ a=c $ then from $ b^{2}=ac $ , we get $ b^{2}=a^{2} $ or $ b=a $ . Thus $ a=b=c $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें