Sequence And Series Question 24
Question: If the sum of $ n $ terms of a G.P. is 255 and $ n^{th} $ terms is 128 and common ratio is 2, then first term will be
[RPET 1990]
Options:
1
3
7
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
Given that  $ \frac{a(r^{n}-1)}{r-1}=255 $   $ (\because \ \ r>1) $        ?..(i)  $ a{r^{n-1}}=128 $                    ?..(ii) and common ratio  $ r=2 $                    ?..(iii) From (iii), (i) and (ii) we get  $ a_1=h_1=2,\ a_{10}=h_{10}=3 $                               ?..(iv) and $ \frac{a(2^{n}-1)}{2-1}=255 $                    …..(v) Dividing (v) by (iv) we get  $ \frac{2^{n}-1}{{2^{n-1}}}=\frac{255}{128} $
$ \Rightarrow  $  $ 2-{2^{-n+1}}=\frac{255}{128} $
$ \Rightarrow  $  $ {2^{-n}}={2^{-8}} $
$ \Rightarrow  $  $ n=8 $  Putting  $ n=8 $   in equation (iv), we have  $ a\ .\ 2^{7}=128=2^{7} $ or  $ a=1 $ .
 BETA
  BETA 
             
             
           
           
           
          