Sequence And Series Question 243

Question: The interior angles of a polygon are in A.P. If the smallest angle be $ 120^{o} $ and the common difference be 5o, then the number of sides is

[IIT 1980]

Options:

A) 8

B) 10

C) 9

D) 6

Show Answer

Answer:

Correct Answer: C

Solution:

Let the number of sides of the polygon be $ n $ . Then the sum of interior angles of the polygon $ =(2n-4)\frac{\pi }{2}=(n-2)\pi $ Since the angles are in A.P. and $ a=120^{o},\ d=5 $ , therefore $ \frac{n}{2}[2\times 120+(n-1)5]=(n-2)180 $
Þ $ n^{2}-25n+144=0 $ Þ $ (n-9)(n-16)=0 $ Þ $ n=9,\ 16 $ But $ n=16 $ gives $ T_{16}=a+15d=120^{o}+{{15.5}^{o}}=195^{o} $ , which is impossible as interior angle cannot be greater than $ 180^{o} $ . Hence $ n=9 $ .