Sequence And Series Question 248
Question: If $ \frac{x+y}{2},\ y,\ \frac{y+z}{2} $ are in H.P., then $ x,\ y,\ z $ are in
[RPET 1989; MP PET 2003]
Options:
A) A.P.
B) G.P.
C) H.P.
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
If  $ \frac{x+y}{2},\ y,\ \frac{y+z}{2} $  are in H.P., then  $ \frac{1}{2}x_1y_1| \ \begin{matrix}    1 & 1 & 1  \\    r & r & 1  \\    r^{2} & r^{2} & 1  \\ \end{matrix}\  |=0 $   $ y=\frac{xy+xz+y^{2}+yz}{x+2y+z} $
$ \Rightarrow  $   $ xy+2y^{2}+yz=xy+xz+y^{2}+yz $
$ \Rightarrow  $  $ y^{2}=xz $  Thus  $ x,\ y,\ z $  will be in G.P.
 BETA
  BETA 
             
             
           
           
           
          