Sequence And Series Question 248

Question: If $ \frac{x+y}{2},\ y,\ \frac{y+z}{2} $ are in H.P., then $ x,\ y,\ z $ are in

[RPET 1989; MP PET 2003]

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

If $ \frac{x+y}{2},\ y,\ \frac{y+z}{2} $ are in H.P., then $ =\frac{1}{2}x_1y_1| \ \begin{matrix} 1 & 1 & 1 \\ r & r & 1 \\ r^{2} & r^{2} & 1 \\ \end{matrix}\ |=0 $ $ y=\frac{xy+xz+y^{2}+yz}{x+2y+z} $
$ \Rightarrow $ $ xy+2y^{2}+yz=xy+xz+y^{2}+yz $
$ \Rightarrow $ $ y^{2}=xz $ Thus $ x,\ y,\ z $ will be in G.P.