Sequence And Series Question 249

Question: If the first and $ {{(2n-1)}^{th}} $ terms of an A.P., G.P. and H.P. are equal and their $ n^{th} $ terms are respectively $ a,\ b $ and $ c $ , then

[IIT 1985, 88]

Options:

A) $ a\ge b\ge c $

B) $ a+c=b $

C) $ ac-b^{2}=0 $

D) (a) and (c) both

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ \alpha ,\beta $ be the first and $ {{(2n-1)}^{th}} $ terms of the A.P., the G.P. and the H.P. respectively. Then we have For A.P. : $ \beta =\alpha +(2n-2)d\Rightarrow d=\frac{\beta -\alpha }{2n-2} $ $ n^{th} $ term $ =a=\alpha +(n-1)d=\frac{1}{2}(\alpha +\beta ) $ ?..(i) Again for G.P. : $ \beta =\alpha .{r^{2n-2}}\Rightarrow r={{( \frac{\beta }{\alpha } )}^{\frac{1}{2n-2}}} $
$ \therefore $ $ n^{th} $ term $ =b=\alpha {r^{n-1}}=\alpha {{( \frac{\beta }{\alpha } )}^{\frac{n-1}{2n-2}}}=\alpha {{( \frac{\beta }{\alpha } )}^{\frac{1}{2}}} $ or $ b={{(\alpha \beta )}^{1/2}}=\sqrt{\alpha \beta } $ ?..(ii) Again for H.P. : $ \frac{1}{\beta }=\frac{1}{\alpha }+(2n-2)d’ $
$ \Rightarrow $ $ \frac{1}{c}=\frac{1}{\alpha }+(n-1)d’=\frac{1}{\alpha }+\frac{\alpha -\beta }{2\alpha \beta }=\frac{\alpha +\beta }{2\alpha \beta } $
$ \Rightarrow $ $ c=\frac{2\alpha \beta }{\alpha +\beta } $ ?..(iii) Now, more than one of the alternative answers may be correct. We try for (a): $ a-b=\frac{\alpha +\beta }{2}-\sqrt{\alpha \beta }=\frac{1}{2}{{(\sqrt{\alpha }-\sqrt{\beta })}^{2}}\ge 0\Rightarrow a\ge b $ $ b-c=\sqrt{\alpha \beta }-\frac{2\alpha \beta }{\alpha +\beta }=\frac{\sqrt{\alpha \beta }}{\alpha +\beta }(\alpha +\beta -2\sqrt{\alpha \beta }) $ $ =\frac{\sqrt{\alpha \beta }}{(\alpha +\beta )}{{(\sqrt{\alpha }-\sqrt{\beta })}^{2}}\ge 0\Rightarrow b\ge c $
$ \therefore $ $ a\ge b\ge c $ ?..(iv) Now we try for : $ ac=\frac{\alpha +\beta }{2}.\frac{2\alpha \beta }{\alpha +\beta }=\alpha \beta =b^{2} $
$ \therefore $ $ ac-b^{2}=0 $ ?..(v) Obviously it can be seen that $ a+c\ne b $ ?..(vi) Hence (a) and (b) both hold good.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें