Sequence And Series Question 25
Question: If $ a,\ b,\ c $ be in H.P., then
Options:
A) $ a^{2}+c^{2}>b^{2} $
B) $ a^{2}+b^{2}>2c^{2} $
C) $ a^{2}+c^{2}>2b^{2} $
D) $ a^{2}+b^{2}>c^{2} $
Show Answer
Answer:
Correct Answer: C
Solution:
From the section of inequality, we know that A.M. of  $ n^{th} $  powers  $ (n-1)=1,\ 2\ i.e.,\ n=2,\ 3 $  power of A.M.  $ i.e. $   $ \frac{1}{2}(a^{n}+c^{n})>{{( \frac{1}{2}(a+c) )}^{n}} $  Considering two quantities  $ b^{2}=ac $  and c or  $ \frac{1}{2}(a^{n}+c^{n})>{{(A)}^{n}} $  or  $ \frac{1}{2}(a^{n}+c^{n})>{{(H)}^{n}} $  Since A.M. >H.M.  $ \frac{1}{2}(a^{n}+c^{n})>{{(b)}^{n}} $
$ \Rightarrow  $   $ a^{n}+c^{n}>2b^{n} $  Putting $ n=2 $ , we have $ a^{2}+c^{2}>2b^{2} $ .
 BETA
  BETA 
             
             
           
           
           
          