Sequence And Series Question 259
Question: If $ m $ is a root of the given equation $ (1-ab)x^{2}- $ $ (a^{2}+b^{2})x $ - $ (1+ab)=0 $ and $ m $ harmonic means are inserted between $ a $ and $ b $ , then the difference between the last and the first of the means equals
Options:
A) $ b-a $
B) $ ab(b-a) $
C) $ a(b-a) $
D) $ ab(a-b) $
Show Answer
Answer:
Correct Answer: B
Solution:
By the given condition  $ (1-ab)m^{2}-(a^{2}+b^{2})m-(1+ab)=0 $
$ \Rightarrow  $  $ m(a^{2}+b^{2})+(m^{2}+1)ab=m^{2}-1 $               ……(i) Now  $ H_1= $ First H.M. between  $ a $  and  $ b $   $ =\frac{(m+1)ab}{a+mb} $  and  $ H_{m}=\frac{(m+1)ab}{b+ma} $
$ \therefore  $  $ H_{m}-H_1=(m+1)ab[ \frac{1}{b+ma}-\frac{1}{a+mb} ] $   $ =(m+1)ab\frac{[(m-1)(b-a)]}{(b+ma)(a+mb)} $  $ =\frac{(m^{2}-1)ab(b-a)}{m(a^{2}+b^{2})+(m^{2}+1)ab} $   $ =\frac{(m^{2}-1)ab(b-a)}{m^{2}-1} $     [by (i)]  $ =ab(b-a) $ .
 BETA
  BETA 
             
             
           
           
           
          