Sequence And Series Question 259

Question: If $ m $ is a root of the given equation $ (1-ab)x^{2}- $ $ (a^{2}+b^{2})x $ - $ (1+ab)=0 $ and $ m $ harmonic means are inserted between $ a $ and $ b $ , then the difference between the last and the first of the means equals

Options:

A) $ b-a $

B) $ ab(b-a) $

C) $ a(b-a) $

D) $ ab(a-b) $

Show Answer

Answer:

Correct Answer: B

Solution:

By the given condition $ (1-ab)m^{2}-(a^{2}+b^{2})m-(1+ab)=0 $
$ \Rightarrow $ $ m(a^{2}+b^{2})+(m^{2}+1)ab=m^{2}-1 $ ……(i) Now $ H_1= $ First H.M. between $ a $ and $ b $ $ =\frac{(m+1)ab}{a+mb} $ and $ H_{m}=\frac{(m+1)ab}{b+ma} $
$ \therefore $ $ H_{m}-H_1=(m+1)ab[ \frac{1}{b+ma}-\frac{1}{a+mb} ] $ $ =(m+1)ab\frac{[(m-1)(b-a)]}{(b+ma)(a+mb)} $ $ =\frac{(m^{2}-1)ab(b-a)}{m(a^{2}+b^{2})+(m^{2}+1)ab} $ $ =\frac{(m^{2}-1)ab(b-a)}{m^{2}-1} $ [by (i)] $ =ab(b-a) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें