Sequence And Series Question 261
Question: If three unequal numbers $ p,\ q,\ r $ are in H.P. and their squares are in A.P., then the ratio $ p:q:r $ is
Options:
A) $ 1-\sqrt{3}:2:1+\sqrt{3} $
B) $ 1:\sqrt{2}:-\sqrt{3} $
C) $ 1:-\sqrt{2}:\sqrt{3} $
D) $ 1\mp \sqrt{3}:-2:1\pm \sqrt{3} $
Show Answer
Answer:
Correct Answer: D
Solution:
By hypothesis,  $ q=\frac{2pr}{p+r} $
$ \Rightarrow  $  $ \frac{q}{2}=\frac{pr}{p+r}=K $ (say)
$ \Rightarrow  $   $ q=2K,\ pr=(p+r)K. $  Also  $ p^{2},\ q^{2},\ r^{2} $  are in A.P.
$ \therefore  $  $ 2q^{2}=p^{2}+r^{2}={{(p+r)}^{2}}-2pr $
$ \Rightarrow  $   $ 8K^{2}={{(p+r)}^{2}}-2(p+r)K $
$ \Rightarrow  $  $ {{(p+r)}^{2}}-2(p+r)K-8K^{2}=0 $
$ \Rightarrow  $  $ p+r=4K,\ -2K $  When $ p+r=4K $ , then   $ pr=4K^{2} $
$ \therefore  $  $ {{(p-r)}^{2}}={{(p+r)}^{2}}-4pr=16K^{2}-16K^{2}=0 $
$ \Rightarrow  $  $ p=r $  But this is not possible              $ (\because \ \ p\ne r) $  \  $ p+r=-2K $
$ \Rightarrow  $  $ pr=-2K\ .\ K=-2K^{2} $  Now  $ {{(p-r)}^{2}}={{(p+r)}^{2}}-4pr=4K^{2}-4(-2K^{2})=12K^{2} $
$ \Rightarrow  $  $ p-r=\pm 2\sqrt{3}K, $  also  $ p+r=-2K $
$ \therefore  $  $ 2p=(-2\pm 2\sqrt{3})K $
$ \Rightarrow  $  $ p=(-1\pm \sqrt{3})K $  and  $ 2r=-2K\mp 2\sqrt{3}K $
$ \Rightarrow  $  $ r=(-1\mp \sqrt{3})K $
$ \therefore  $  $ p:q:r=(-1\pm \sqrt{3})K:2K:(-1\mp \sqrt{3})K $   $ =-1\pm \sqrt{3}:2:-1\mp \sqrt{3}=1\mp \sqrt{3}:-2:1\pm \sqrt{3} $ .
 BETA
  BETA 
             
             
           
           
           
          