Sequence And Series Question 261

Question: If three unequal numbers $ p,\ q,\ r $ are in H.P. and their squares are in A.P., then the ratio $ p:q:r $ is

Options:

A) $ 1-\sqrt{3}:2:1+\sqrt{3} $

B) $ 1:\sqrt{2}:-\sqrt{3} $

C) $ 1:-\sqrt{2}:\sqrt{3} $

D) $ 1\mp \sqrt{3}:-2:1\pm \sqrt{3} $

Show Answer

Answer:

Correct Answer: D

Solution:

By hypothesis, $ q=\frac{2pr}{p+r} $
$ \Rightarrow $ $ \frac{q}{2}=\frac{pr}{p+r}=K $ (say)
$ \Rightarrow $ $ q=2K,\ pr=(p+r)K. $ Also $ p^{2},\ q^{2},\ r^{2} $ are in A.P.
$ \therefore $ $ 2q^{2}=p^{2}+r^{2}={{(p+r)}^{2}}-2pr $
$ \Rightarrow $ $ 8K^{2}={{(p+r)}^{2}}-2(p+r)K $
$ \Rightarrow $ $ {{(p+r)}^{2}}-2(p+r)K-8K^{2}=0 $
$ \Rightarrow $ $ p+r=4K,\ -2K $ When $ p+r=4K $ , then $ pr=4K^{2} $
$ \therefore $ $ {{(p-r)}^{2}}={{(p+r)}^{2}}-4pr=16K^{2}-16K^{2}=0 $
$ \Rightarrow $ $ p=r $ But this is not possible $ (\because \ \ p\ne r) $ \ $ p+r=-2K $
$ \Rightarrow $ $ pr=-2K\ .\ K=-2K^{2} $ Now $ {{(p-r)}^{2}}={{(p+r)}^{2}}-4pr=4K^{2}-4(-2K^{2})=12K^{2} $
$ \Rightarrow $ $ p-r=\pm 2\sqrt{3}K, $ also $ p+r=-2K $
$ \therefore $ $ 2p=(-2\pm 2\sqrt{3})K $
$ \Rightarrow $ $ p=(-1\pm \sqrt{3})K $ and $ 2r=-2K\mp 2\sqrt{3}K $
$ \Rightarrow $ $ r=(-1\mp \sqrt{3})K $
$ \therefore $ $ p:q:r=(-1\pm \sqrt{3})K:2K:(-1\mp \sqrt{3})K $ $ =-1\pm \sqrt{3}:2:-1\mp \sqrt{3}=1\mp \sqrt{3}:-2:1\pm \sqrt{3} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें