Sequence And Series Question 263

Question: If $ \frac{a+bx}{a-bx}=\frac{b+cx}{b-cx}=\frac{c+dx}{c-dx}(x\ne 0) $ , then $ a,\ b,\ c,\ d $ are in

[RPET 1986]

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{a+bx}{a-bx}=\frac{b+cx}{b-cx}=\frac{c+dx}{c-dx} $ Applying componendo and dividendo, we get $ \frac{2a}{2bx}=\frac{2b}{2cx}=\frac{2c}{2dx} $
$ \Rightarrow $ $ b^{2}=ac $ and $ c^{2}=bd $
$ \Rightarrow $ $ a,\ b,\ c $ and $ b,\ c,\ d $ are in G.P. Therefore, $ a,\ b,\ c,\ d $ are in G.P.