Sequence And Series Question 268

Question: If $ G $ be the geometric mean of $ x $ and $ y $ , then $ \frac{1}{G^{2}-x^{2}}+\frac{1}{G^{2}-y^{2}}= $

Options:

A) $ G^{2} $

B) $ \frac{1}{G^{2}} $

C) $ \frac{2}{G^{2}} $

D) $ 3G^{2} $

Show Answer

Answer:

Correct Answer: B

Solution:

As given $ G=\sqrt{xy} $
$ \therefore $ $ \frac{1}{G^{2}-x^{2}}+\frac{1}{G^{2}-y^{2}}=\frac{1}{xy-x^{2}}+\frac{1}{xy-y^{2}} $ $ =\frac{1}{x-y}{ -\frac{1}{x}+\frac{1}{y} }=\frac{1}{xy}=\frac{1}{G^{2}} $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index