Sequence And Series Question 270
Question: If the product of three terms of G.P. is 512. If 8 added to first and 6 added to second term, so that number may be in A.P., then the numbers are
[Roorkee 1964]
Options:
A) 2, 4, 8
B) 4, 8, 16
C) 3, 6, 12
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
Let three terms of a G.P. are  $ \frac{a}{r},\ a,\ ar $  So  $ \frac{a}{r}.\ a.\ ar=512 $
$ \Rightarrow  $  $ a^{3}=8^{3} $
$ \Rightarrow  $  $ a=8 $  From second condition, we get  $ \frac{a}{r}+8,\ a+6,\ ar $  will be in A.P.
$ \Rightarrow  $   $ 2(a+6)=\frac{a}{r}+8+ar $
$ \Rightarrow  $  $ 28=8{ \frac{1}{r}+1+r } $
$ \Rightarrow  $   $ \frac{1}{r}+r+1=\frac{7}{2} $
$ \Rightarrow  $  $ \frac{1}{r}+r-\frac{5}{2}=0 $
$ \Rightarrow  $   $ r^{2}-\frac{5}{2}r+1=0 $
$ \Rightarrow  $  $ 2r^{2}-5r+2=0 $
$ \Rightarrow  $   $ (2r-1)(r-2)=0 $
$ \Rightarrow  $  $ r=\frac{1}{2},\ r=2 $   $ (\because \ r>1) $
$ \Rightarrow  $   $ r=2 $ . Hence required numbers are  $ 4,\ 8,\ 16 $ . Trick: Check for (a)  $ 2+8,\ 4+6,\ 8 $  are not in A.P. (b)  $ 4+8,\ 8+6,\ 16\ i.e.\ 12,\ 14,\ 16 $  are in A.P.
 BETA
  BETA 
             
             
           
           
           
          