Sequence And Series Question 270

Question: If the product of three terms of G.P. is 512. If 8 added to first and 6 added to second term, so that number may be in A.P., then the numbers are

[Roorkee 1964]

Options:

A) 2, 4, 8

B) 4, 8, 16

C) 3, 6, 12

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Let three terms of a G.P. are $ \frac{a}{r},\ a,\ ar $ So $ \frac{a}{r}.\ a.\ ar=512 $
$ \Rightarrow $ $ a^{3}=8^{3} $
$ \Rightarrow $ $ a=8 $ From second condition, we get $ \frac{a}{r}+8,\ a+6,\ ar $ will be in A.P.
$ \Rightarrow $ $ 2(a+6)=\frac{a}{r}+8+ar $
$ \Rightarrow $ $ 28=8{ \frac{1}{r}+1+r } $
$ \Rightarrow $ $ \frac{1}{r}+r+1=\frac{7}{2} $
$ \Rightarrow $ $ \frac{1}{r}+r-\frac{5}{2}=0 $
$ \Rightarrow $ $ r^{2}-\frac{5}{2}r+1=0 $
$ \Rightarrow $ $ 2r^{2}-5r+2=0 $
$ \Rightarrow $ $ (2r-1)(r-2)=0 $
$ \Rightarrow $ $ r=\frac{1}{2},\ r=2 $ $ (\because \ r>1) $
$ \Rightarrow $ $ r=2 $ . Hence required numbers are $ 4,\ 8,\ 16 $ . Trick: Check for (a) $ 2+8,\ 4+6,\ 8 $ are not in A.P. (b) $ 4+8,\ 8+6,\ 16\ i.e.\ 12,\ 14,\ 16 $ are in A.P.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें