Sequence And Series Question 271

Question: If the ratio of H.M. and G.M. between two numbers $ a $ and $ b $ is $ 4:5 $ , then the ratio of the two numbers will be

[IIT 1992; MP PET 2000]

Options:

A) $ 1:2 $

B) $ 2:1 $

C) $ 4:1 $

D) $ 1:4 $

Show Answer

Answer:

Correct Answer: D

Solution:

We have H.M. = $ \frac{2ab}{a+b} $ and G.M. $ =\sqrt{ab} $ So $ \frac{H.M.}{G.M.}=\frac{4}{5} $
$ \Rightarrow $ $ \frac{2ab/(a+b)}{\sqrt{ab}}=\frac{4}{5} $
$ \Rightarrow $ $ \frac{2\sqrt{ab}}{(a+b)}=\frac{4}{5} $
$ \Rightarrow $ $ \frac{a+b}{2\sqrt{ab}}=\frac{5}{4} $
$ \Rightarrow $ $ \frac{a+b+2\sqrt{ab}}{a+b-2\sqrt{ab}}=\frac{5+4}{5-4} $
$ \Rightarrow $ $ \frac{{{(\sqrt{a}+\sqrt{b})}^{2}}}{{{(\sqrt{a}-\sqrt{b})}^{2}}}=\frac{9}{1} $
$ \Rightarrow $ $ \frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=\frac{3}{1} $
$ \Rightarrow $ $ \frac{(\sqrt{a}+\sqrt{b})+(\sqrt{a}-\sqrt{b})}{(\sqrt{a}+\sqrt{b})-(\sqrt{a}-\sqrt{b})}=\frac{3+1}{3-1} $
$ \Rightarrow $ $ \frac{2\sqrt{a}}{2\sqrt{b}}=\frac{4}{2} $
$ \Rightarrow $ $ ( \frac{a}{b} )=2^{2}=4 $
$ \Rightarrow $ $ a:b=4:1 $ or $ b:a=1:4 $ . Aliter: Let the numbers be in the ratio $ \lambda :1 $ and let they be $ \lambda a $ and $ a $ Then $ \frac{2(\lambda a)a}{\lambda a+a}.\frac{1}{\sqrt{\lambda a\ .\ a}}=\frac{4}{5} $
$ \Rightarrow $ $ \frac{\sqrt{\lambda }}{\lambda +1}=\frac{2}{5} $
$ \Rightarrow $ $ 25\lambda =4({{\lambda }^{2}}+2\lambda +1) $
$ \Rightarrow $ $ (\lambda -4)(4\lambda -1)=0 $
$ \Rightarrow $ $ \lambda =4 $ or $ \lambda =\frac{1}{4} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें