Sequence And Series Question 277

Question: $ {\log_3}2,\ {\log_6}2,\ {\log_{12}}2 $ are in

[RPET 1993, 2001]

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of the above

Show Answer

Answer:

Correct Answer: C

Solution:

If the numbers are $ \frac{1}{x},\ \frac{1}{y},\ \frac{1}{z} $ , then $ x={\log_2}3,\ y={\log_2}2,\ 3=1+{\log_2}3 $ and $ z=2+{\log_2}3 $ . Therefore $ \frac{1.(10^{91}-1)}{10-1}=\frac{{{(10^{13})}^{7}}-1}{10^{13}-1}\times \frac{10^{13}-1}{10-1} $ are in A.P. Hence $ \frac{1}{x},\ \frac{1}{y},\ \frac{1}{z}\ \ \ i.e. $ , the given numbers are in H.P.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें