Sequence And Series Question 283

Question: If $ \log (x+z)+\log (x+z-2y)=2\log (x-z),, $ then $ x,,y,,z $ are in

[RPET 1999]

Options:

A) H.P.

B) G.P.

C) A.P.

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \log ,(x+z)+\log (x+z-2y)=2\log (x-z) $ $ \log (x+z)(x+z-2y)=\log {{(x-z)}^{2}} $ $ xz-xy-yz=-xz $
$ \Rightarrow 2xz=xy+yz $ Dividing by $ x,y,z, $ we get Þ $ \frac{2}{y}=\frac{1}{x}+\frac{1}{z} $ i.e., $ \frac{1}{x},\frac{1}{y},\frac{1}{z} $ are in A.P. Þ $ x,y,z $ are in H.P.