Sequence And Series Question 283
Question: If $ \log (x+z)+\log (x+z-2y)=2\log (x-z),, $ then $ x,,y,,z $ are in
[RPET 1999]
Options:
A) H.P.
B) G.P.
C) A.P.
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
$ \log ,(x+z)+\log (x+z-2y)=2\log (x-z) $   $ \log (x+z)(x+z-2y)=\log {{(x-z)}^{2}} $   $ xz-xy-yz=-xz $
$ \Rightarrow 2xz=xy+yz $  Dividing by  $ x,y,z, $  we get
Þ  $ \frac{2}{y}=\frac{1}{x}+\frac{1}{z} $  i.e.,  $ \frac{1}{x},\frac{1}{y},\frac{1}{z} $ are in A.P.
Þ  $ x,y,z $  are in H.P.
 BETA
  BETA 
             
             
           
           
           
          