Sequence And Series Question 287

Question: If a ,b, c are in A.P., then $ \frac{1}{\sqrt{a}+\sqrt{b}},,\frac{1}{\sqrt{a}+\sqrt{c}}, $ $ \frac{1}{\sqrt{b}+\sqrt{c}} $ are in

[Roorkee 1999; Kerala (Engg.) 2005]

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

a, b, c are in A.P. i.e., 2b = a + c Let $ \frac{1}{\sqrt{a}+\sqrt{c}}-\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{1}{\sqrt{b}+\sqrt{c}}-\frac{1}{\sqrt{a}+\sqrt{c}} $
Þ $ \frac{\sqrt{b}-\sqrt{c}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{b}+\sqrt{c}} $
$ \Rightarrow b-c=a-b $ Þ $ 2b=a+c $
$ \therefore \frac{1}{\sqrt{a}+\sqrt{b}},\frac{1}{\sqrt{a}+\sqrt{c}},\frac{1}{\sqrt{b}+\sqrt{c}} $ are in A.P.