Sequence And Series Question 29

Question: $ 1+\frac{a-bx}{1,!}+\frac{{{(a-bx)}^{2}}}{2,!}+\frac{{{(a-bx)}^{3}}}{3,!}+….\infty = $

Options:

A) $ {e^{a-bx}} $

B) $ {e^{a-bx}}-1 $

C) $ 1+a{\log_{e}}(a-bx) $

D) $ {e^{-bx}} $

Show Answer

Answer:

Correct Answer: A

Solution:

$ 1+\frac{(a-bx)}{1\ !}+\frac{{{(a-bx)}^{2}}}{2\ !}+\frac{{{(a-bx)}^{3}}}{3\ !}+……={e^{a-bx}} $ .