Sequence And Series Question 292

Question: If $ p,\ q,\ r $ are in one geometric progression and $ a,\ b,\ c $ in another geometric progression, then $ cp,\ bq,\ ar $ are in

[Roorkee 1998]

Options:

A) A.P.

B) H.P.

C) G.P.

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

As $ p,\ q,\ r $ are in G.P.
$ \therefore $ $ q^{2}=pr $ ?..(i) and $ a,\ b,\ c $ are also in G.P.
$ \therefore $ $ b^{2}=ac $ ?..(ii) From (i) and (ii), $ q^{2}b^{2}=(pr)(ac) $
$ \Rightarrow $ $ {{(bq)}^{2}}=(cp)\ .\ (ar) $ Hence $ cp,\ bq,\ ar $ are in G.P.