Sequence And Series Question 292
Question: If $ p,\ q,\ r $ are in one geometric progression and $ a,\ b,\ c $ in another geometric progression, then $ cp,\ bq,\ ar $ are in
[Roorkee 1998]
Options:
A) A.P.
B) H.P.
C) G.P.
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
As  $ p,\ q,\ r $  are in G.P.
$ \therefore  $  $ q^{2}=pr $  ?..(i) and  $ a,\ b,\ c $  are also in G.P.
$ \therefore  $  $ b^{2}=ac $  ?..(ii) From (i) and (ii),  $ q^{2}b^{2}=(pr)(ac) $
$ \Rightarrow  $  $ {{(bq)}^{2}}=(cp)\ .\ (ar) $  Hence  $ cp,\ bq,\ ar $  are in G.P.
 BETA
  BETA 
             
             
           
           
           
          