Sequence And Series Question 293

Question: If first three terms of sequence $ \frac{1}{16},a,b,\frac{1}{6} $ are in geometric series and last three terms are in harmonic series, then the value of $ a $ and $ b $ will be

[UPSEAT 1999]

Options:

A) $ a=-\frac{1}{4},b=1 $

B) $ a=\frac{1}{12},b=\frac{1}{9} $

C) (a) and (b) both are true

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

If $ \frac{1}{16},a,b $ are in G.P., then $ a^{2}=\frac{b}{16} $ or $ 16,a^{2}=b $ …..(i) and if $ a,b,\frac{1}{6} $ are in H.P., then $ b=\frac{2.a.\frac{1}{6}}{a+\frac{1}{6}}=\frac{2a}{6a+1} $ ?..(ii) From (i) and (ii), $ 16a^{2}=\frac{2a}{6a+1} $ or $ 2a( 8a-\frac{1}{6a+1} )=0 $ or $ 8a,(6a+1)-1=0 $ or $ 48a^{2}+8a-1=0 $ , $ (\because a\ne 0) $ or $ (4a+1)(12a-1)=0 $
$ \therefore $ $ a=-\frac{1}{4},\frac{1}{12} $ When $ a=-\frac{1}{4} $ then from (i), $ b=16,{{( -\frac{1}{4} )}^{2}}=1 $ When $ a=\frac{1}{12} $ then from (i), $ b=16{{( \frac{1}{12} )}^{2}}=\frac{1}{9} $ Therefore, $ a=-\frac{1}{4},b=1 $ or $ a=\frac{1}{12},b=\frac{1}{9} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें