Sequence And Series Question 293
Question: If first three terms of sequence $ \frac{1}{16},a,b,\frac{1}{6} $ are in geometric series and last three terms are in harmonic series, then the value of $ a $ and $ b $ will be
[UPSEAT 1999]
Options:
A) $ a=-\frac{1}{4},b=1 $
B) $ a=\frac{1}{12},b=\frac{1}{9} $
C) (a) and (b) both are true
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
If  $ \frac{1}{16},a,b $ are in G.P., then  $ a^{2}=\frac{b}{16} $   or    $ 16,a^{2}=b $  …..(i) and if  $ a,b,\frac{1}{6} $ are in H.P., then  $ b=\frac{2.a.\frac{1}{6}}{a+\frac{1}{6}}=\frac{2a}{6a+1} $  ?..(ii) From (i) and  (ii),  $ 16a^{2}=\frac{2a}{6a+1} $  or  $ 2a( 8a-\frac{1}{6a+1} )=0 $  or  $ 8a,(6a+1)-1=0 $  or  $ 48a^{2}+8a-1=0 $ ,       $ (\because a\ne 0) $  or  $ (4a+1)(12a-1)=0 $
$ \therefore  $   $ a=-\frac{1}{4},\frac{1}{12} $  When  $ a=-\frac{1}{4} $  then from (i),  $ b=16,{{( -\frac{1}{4} )}^{2}}=1 $  When  $ a=\frac{1}{12} $  then from (i),  $ b=16{{( \frac{1}{12} )}^{2}}=\frac{1}{9} $  Therefore,  $ a=-\frac{1}{4},b=1 $  or  $ a=\frac{1}{12},b=\frac{1}{9} $ .
 BETA
  BETA 
             
             
           
           
           
          