Sequence And Series Question 294
Question: Given $ a+d>b+c $ where $ a,\ b,\ c,\ d $ are real numbers, then
[Kurukshetra CEE 1998]
Options:
A) $ a,\ b,\ c,\ d $ are in A.P.
B) $ \frac{1}{a},\ \frac{1}{b},\ \frac{1}{c},\ \frac{1}{d} $ are in A.P.
C) $ (a+b),\ (b+c),\ (c+d),\ (a+d) $ are in A.P.
D) $ \frac{1}{a+b},\ \frac{1}{b+c},\ \frac{1}{c+d},\ \frac{1}{a+d} $ are in A.P.
Show Answer
Answer:
Correct Answer: B
Solution:
$ a+d>b+c $
$ \Rightarrow  $  $ a+b+c+d>2b+2c $
$ \Rightarrow  $  $ \frac{a+c}{2}+\frac{b+d}{2}>b+c $   $ \because  $  $ \frac{a+c}{2}>b $  and  $ \frac{b+d}{2}>c $    $ [\because \ A>H] $   $ b $  is the H.M. of  $ a $  and  $ c $  and their A.M. is  $ \frac{a+c}{2} $ .  $ c $  is H.M. of  $ b $  and  $ d $  and their A.M. is  $ \frac{b+d}{2} $ . Hence,  $ a,\ b,\ c,\ d $  are in H.P.
$ \Rightarrow  $  $ \frac{1}{a},\ \frac{1}{b},\ \frac{1}{c},\ \frac{1}{d} $  are in A.P.
 BETA
  BETA 
             
             
           
           
           
          