Sequence And Series Question 295

Question: If $ A_1,\ A_2;G_1,\ G_2 $ and $ H_1,\ H_2 $ be two A.M.s, G.M.s and H.M.s between two numbers respectively, then $ \frac{G_1G_2}{H_1H_2}\times \frac{H_1+H_2}{A_1+A_2} $ =

[RPET 1997]

Options:

A) 1

B) 0

C) 2

D) 3

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ a $ and $ b $ two numbers respectively. Sum of $ n $ A.M.’s $ =n\times $ single A.M.
$ \Rightarrow $ $ A_1+A_2=2\times ( \frac{a+b}{2} )=a+b $ Product of $ n $ G.M.’s = (Single G.M.)n
$ \Rightarrow $ $ G_1.G_2={{(\sqrt{ab})}^{2}}=ab $ $ \frac{1}{a},\ \frac{1}{H_1},\ \frac{1}{H_2},\ \frac{1}{b} $ are in A.P.
$ \Rightarrow $ $ \frac{1}{H_1}+\frac{1}{H_2}=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab} $
$ \Rightarrow $ $ \frac{H_1H_2}{H_1+H_2}=\frac{G_1G_2}{A_1+A_2} $
$ \Rightarrow $ $ \frac{G_1G_2}{H_1H_2}\times \frac{H_1+H_2}{A_1+A_2}=1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें