Sequence And Series Question 298

Question: If in the equation $ ax^{2}+bx+c=0, $ the sum of roots is equal to sum of square of their reciprocals, then $ \frac{c}{a},\frac{a}{b},\frac{b}{c} $ are in

[RPET 2000]

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \alpha +\beta =\frac{1}{{{\alpha }^{2}}}+\frac{1}{{{\beta }^{2}}}= $ $ \frac{{{\alpha }^{2}}+{{\beta }^{2}}}{{{(\alpha ,\beta )}^{2}}} $ $ =\frac{{{(\alpha +\beta )}^{2}}-2\alpha \beta }{{{(\alpha ,\beta )}^{2}}} $ ?..(i) $ \alpha +\beta =-b/a $ and $ \alpha \beta =c/a $ Putting these value in (i) Þ $ ( \frac{-b}{a} ),( \frac{c^{2}}{a^{2}} )=\frac{b^{2}}{a^{2}}-\frac{2c}{a} $ or $ -bc^{2}=ab^{2}-2ca^{2} $ or $ 2c,a^{2}=ab^{2}+bc^{2} $ Dividing by abc we get, $ \frac{2a}{b}=\frac{b}{c}+\frac{c}{a} $
Þ $ \frac{c}{a},\frac{a}{b},\frac{b}{c} $ are in A.P.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें