Sequence And Series Question 302

Question: If $ b+c, $ $ c+a, $ $ a+b $ are in H.P., then $ \frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b} $ are in

[RPET 2000]

Options:

A) A.P.

B) G.P.

C) H.P.

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ \frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b} $ are in A.P. Add 1 to each term, we get $ \frac{a+b+c}{b+c},\frac{b+c+a}{c+a},\frac{c+a+b}{a+b} $ are in A.P. Divide each term by (a + b + c), $ \frac{1}{b+c},\frac{1}{c+a},\frac{1}{a+b} $ are in A.P. Hence $ b+c,c+a,a+b $ are in H.P. which is given in question Therefore, $ \frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b} $ are in A. P.