Sequence And Series Question 303

Question: If the sum of three numbers of a arithmetic sequence is 15 and the sum of their squares is 83, then the numbers are

[MP PET 1985]

Options:

A) 4, 5, 6

B) 3, 5, 7

C) 1, 5, 9

D) 2, 5, 8

Show Answer

Answer:

Correct Answer: B

Solution:

Let three numbers are $ a-d,\ a,\ a+d $ . We get $ a-d+a+a+d=15 $
$ \Rightarrow $ $ a=5 $ and $ {{(a-d)}^{2}}+a^{2}+{{(a+d)}^{2}}=83 $
$ \Rightarrow $ $ a^{2}+d^{2}-2ad+a^{2}+a^{2}+d^{2}+2ad=83 $
$ \Rightarrow $ $ 2(a^{2}+d^{2})+a^{2}=83 $ Putting $ a=5 $
$ \Rightarrow $ $ 2(25+d^{2})+25=83 $
$ \Rightarrow $ $ 2d^{2}=8 $
$ \Rightarrow $ $ d=2 $ Thus numbers are 3, 5, 7. Trick: Since $ 3+5+7=15 $ and $ 3^{2}+5^{2}+7^{2}=83 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें