Sequence And Series Question 304

Question: If $ n $ be odd or even, then the sum of $ n $ terms of the series $ 1-2+ $ $ 3- $ $ 4+5-6+…… $ will be

Options:

A) $ -\frac{n}{2} $

B) $ \frac{n-1}{2} $

C) $ \frac{n+1}{2} $

D) $ \frac{2n+1}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Given series $ S=1-2+3-4+5-6……… $ Case I. If $ n $ is odd, say $ 2m+1 $ In this case, the number of positive terms $ =\frac{1}{2}(n+1)=\frac{1}{2}(2m+1+1)=(m+1) $ and the number of negative terms $ =(2m+1)-(m+1)=m $ Then sum $ =[1+3+5+………upto,(m+1)\ \text{terms }] $ $ -[2+4+6…….upto\ m\ terms] $ $ =\frac{1}{2}(m+1)[2+(m+1-1)2]-\frac{m}{2}[4+(m-1)2] $ $ =(m+1)(m+1-m)=m+1=\frac{1}{2}(n+1) $ . Case II. If $ n $ is even Sum $ =( 1+3+5……upto\ \frac{n}{2},terms ) $ $ -( 2+4+6….upto,\frac{n}{2}terms ) $ $ =\frac{1}{2}.\ \frac{n}{2}[ 2+( \frac{n}{2}-1 )2 ]-\frac{1}{2}.\frac{n}{2}[ 4+( \frac{n}{2}-1 )2 ] $ $ =\frac{1}{4}n[n-(n+2)]=-\frac{n}{2} $ . Trick: Put $ n=\ 3,,4 $ $ S_1=2,\ S_3=-,2, $ which the option (a) and (c) give for $ n=3,4 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें