Sequence And Series Question 309
Question: If the altitudes of a triangle are in A.P., then the sides of the triangle are in
[EAMCET 2002]
Options:
A) A.P.
B) H.P.
C) G.P.
D) Arithmetico-geometric progression
Show Answer
Answer:
Correct Answer: B
Solution:
Let   $ P_1,P_2,P_3 $  be altitudes from P, Q and R  $ P_1=c\sin Q=\lambda bc $ ,  $ P_2=a,\sin R=\lambda ca $   $ P_3=b\sin P=\lambda ab $     $ [ \therefore \frac{\sin P}{a}=\frac{\sin Q}{b}=\frac{\sin R}{c}=\lambda  ] $
Þ  $ P_1,P_2,P_3 $  are in A.P.
Þ   $ \lambda bc,\lambda ca,\lambda ab $ are in A.P.
Þ  $ bc,ca,ab $  are in A.P.
Þ  $ \frac{abc}{a},\frac{abc}{b},\frac{abc}{c} $  are in A.P  $ \frac{1}{a},,\frac{1}{b},,\frac{1}{c} $  are in A.P.
$ \therefore a,b,c $  are in H.P. i.e., sides of the triangle are in H.P.
 BETA
  BETA 
             
             
           
           
           
          