Sequence And Series Question 309

Question: If the altitudes of a triangle are in A.P., then the sides of the triangle are in

[EAMCET 2002]

Options:

A) A.P.

B) H.P.

C) G.P.

D) Arithmetico-geometric progression

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ P_1,P_2,P_3 $ be altitudes from P, Q and R $ P_1=c\sin Q=\lambda bc $ , $ P_2=a,\sin R=\lambda ca $ $ P_3=b\sin P=\lambda ab $ $ [ \therefore \frac{\sin P}{a}=\frac{\sin Q}{b}=\frac{\sin R}{c}=\lambda ] $
Þ $ P_1,P_2,P_3 $ are in A.P.
Þ $ \lambda bc,\lambda ca,\lambda ab $ are in A.P. Þ $ bc,ca,ab $ are in A.P. Þ $ \frac{abc}{a},\frac{abc}{b},\frac{abc}{c} $ are in A.P $ \frac{1}{a},,\frac{1}{b},,\frac{1}{c} $ are in A.P.
$ \therefore a,b,c $ are in H.P. i.e., sides of the triangle are in H.P.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें