Sequence And Series Question 309

Question: If the altitudes of a triangle are in A.P., then the sides of the triangle are in

[EAMCET 2002]

Options:

A) A.P.

B) H.P.

C) G.P.

D) Arithmetico-geometric progression

Show Answer

Answer:

Correct Answer: B

Solution:

Let $ P_1,P_2,P_3 $ be altitudes from P, Q and R $ P_1=c\sin Q=\lambda bc $ , $ P_2=a,\sin R=\lambda ca $ $ P_3=b\sin P=\lambda ab $ $ [ \therefore \frac{\sin P}{a}=\frac{\sin Q}{b}=\frac{\sin R}{c}=\lambda ] $
Þ $ P_1,P_2,P_3 $ are in A.P.
Þ $ \lambda bc,\lambda ca,\lambda ab $ are in A.P. Þ $ bc,ca,ab $ are in A.P. Þ $ \frac{abc}{a},\frac{abc}{b},\frac{abc}{c} $ are in A.P $ \frac{1}{a},,\frac{1}{b},,\frac{1}{c} $ are in A.P.
$ \therefore a,b,c $ are in H.P. i.e., sides of the triangle are in H.P.