Sequence And Series Question 315

Question: The sum of the series $ \frac{1}{1.2}+\frac{1.3}{1.2.3.4}+\frac{1.3.5}{1.2.3.4.5.6}+…..\infty $ is

[Kurukshetra CEE 2002]

Options:

A) $ 15e $

B) $ {e^{1/2}}+e $

C) $ {e^{1/2}}-1 $

D) $ {e^{1/2}}-e $

Show Answer

Answer:

Correct Answer: C

Solution:

The nth term of given series is $ T_{n}=\frac{1.3.5.7…..(2n-1)}{1.2.3.4………(2n)} $ $ T_{n}=\frac{1.2.3.4…..(2n-2)(2n-1)(2n)}{1.2.3.4…(2n-1)(2n)} $ $ \times \frac{1}{2.4.6…(2n-2)(2n)} $ $ T_{n} $ $ =\frac{1}{(2^{n}n!)} $ , $ \therefore S=\sum\limits_{n=1}^{\infty }{\frac{{{( \frac{1}{2} )}^{n}}}{n!}={e^{\frac{1}{2}}}-1.} $